$\mathrm{Na}\left[\mathrm{Si}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}_{2}\right)\right] \cdot 0.25 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$

$\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{O}(5)$	116.38 (10)	$\mathrm{Si}(1)-\mathrm{O}(3)-\mathrm{C}(3)$	116.26 (18)
$\mathrm{O}(4)-\mathrm{Si}(1)-\mathrm{O}(5)$	97.41 (10)	$\mathrm{Si}(1)-\mathrm{O}(4)-\mathrm{C}(4)$	113.35 (17)
$\mathrm{O}(1)-\mathrm{Na}(1)-\mathrm{O}\left(1^{\mathrm{i}}\right)$	87.62 (7)	$\mathrm{Si}(1)-\mathrm{O}(5)-\mathrm{C}(5)$	127.05 (17)
$\mathrm{O}(1)-\mathrm{Na}(1)-\mathrm{O}\left({ }^{\text {iii }}\right.$)	109.58 (7)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	105.7 (2)
$\mathrm{O}(1)-\mathrm{Na}(1)-\mathrm{O}\left(3^{\text {i }}\right.$)	104.86 (8)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$	106.3 (2)
$\mathrm{O}(1)-\mathrm{Na}(1)-\mathrm{O}(5)$	60.15 (7)	$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	106.5 (3)
$\mathrm{O}(1)-\mathrm{Na}(1)-\mathrm{O}(6)$	129.00 (8)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	105.9 (3)
$\mathrm{O}\left(1^{\text {i }}\right)-\mathrm{Na}(1)-\mathrm{O}\left(2^{\text {ii }}\right)$	145.82 (7)	$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	107.7 (2)
$\mathrm{O}\left(1^{\mathrm{i}}\right)-\mathrm{Na}(1)-\mathrm{O}(3)$	59.68 (6)	$\mathrm{O}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	109.9 (3)
$\mathrm{O}\left(1^{\mathrm{i}}\right)-\mathrm{Na}(1)-\mathrm{O}(5)$	108.27 (7)	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	180.0
$\mathrm{O}\left(1^{\mathrm{i}}\right)-\mathrm{Na}(1)-\mathrm{O}(6)$	98.40 (7)		
$\mathrm{O}(1)-\mathrm{Si}$	-O(2)-C(2)		
$\mathrm{O}(4)-\mathrm{Si}$	- $\mathrm{O}(2)-\mathrm{C}(2)$	-176.	
$\mathrm{O}(1)-\mathrm{Si}$	-O(3)-C(3)	171.	
$\mathrm{O}(4)-\mathrm{Si}$	- $\mathrm{O}(3)-\mathrm{C}(3)$	-3.	
$\mathrm{O}(1)-\mathrm{Si}$	-O(4)-C(4)	-70.	
$\mathrm{O}(3)-\mathrm{Si}$	-O(4)-C(4)	-16.	
$\mathrm{Si}(1)-\mathrm{O}$	- $\mathrm{C}(1)-\mathrm{C}(2)$	-30.	
$\mathrm{Si}(1)-\mathrm{O}$	- $\mathrm{C}(2)-\mathrm{C}(1)$	-27.	
$\mathrm{Si}(1)-\mathrm{O}$	- $\mathrm{C}(3)-\mathrm{C}(4)$		
$\mathrm{Si}(1)-\mathrm{O}$	- $\mathrm{C}(4)-\mathrm{C}(3)$		
$\mathrm{Si}(1)-\mathrm{O}$	-C(5)-C(6)	-176.	
$\mathrm{O}(1)-\mathrm{C}(1)$	$-\mathrm{C}(2)-\mathrm{O}(2)$		
$\mathrm{O}(3)-\mathrm{C}$	$-\mathrm{C}(4)-\mathrm{O}(4)$	-30.	
$\mathrm{O}(5)-\mathrm{C}$	$-\mathrm{C}(6)-\mathrm{O}(6)$		
$\mathrm{O}(2)-\mathrm{Si}$	$-\mathrm{O}(1)-\mathrm{C}(1)$		
$\mathrm{O}(3)-\mathrm{Si}$	$-\mathrm{O}(1)-\mathrm{C}(1)$	-114.	
$\mathrm{O}(4)-\mathrm{Si}$	$-\mathrm{O}(1)-\mathrm{C}(1)$	-60.	
$\mathrm{O}(5)-\mathrm{Si}$	- $\mathrm{O}(1)-\mathrm{C}(1)$	129.	
$\mathrm{O}(3)-\mathrm{Si}$	-O(2)-C(2)		
$\mathrm{O}(5)-\mathrm{Si}$	-O(2)-C(2)	-79.	
$\mathrm{O}(2)-\mathrm{Si}$	-O(3)-C(3)		
$\mathrm{O}(5)-\mathrm{Si}$	-O(3)-C(3)	-101.	
$\mathrm{O}(2)-\mathrm{Si}$	-O(4)-C(4)	-144	
$\mathrm{O}(5)-\mathrm{Si}$	- $\mathrm{O}(4)-\mathrm{C}(4)$		
$\mathrm{O}(1)-\mathrm{Si}$	-O(5)-C(5)	158	
$\mathrm{O}(2)-\mathrm{Si}$	-O(5)-C(5)	-112.	
$\mathrm{O}(3)-\mathrm{Si}$	-O(5)-C(5)		
$\mathrm{O}(4)-\mathrm{Si}$	$-\mathrm{O}(5)-\mathrm{C}(5)$	-20	
Symmetry codes: (i) $2-x,-y,-z$; (ii) $1+y, \frac{1}{2}-x, z$.			

The crystal selected was mounted rapidly under a cold nitrogen stream on the diffractometer. Data were collected with a fixed background time and a scan speed of $5.0^{\circ} \mathrm{min}^{-1}$. The crystal decomposed by reaction with atmospheric moisture within minutes of its removal from the cold nitrogen stream.

The structure was solved by direct methods (Sheldrick, 1990) and successive difference Fourier syntheses. Refinement was by a full-matrix least-squares method (Gabe et al., 1992). All H atoms were refined with isotropic displacement parameters. The H atoms on the acetonitrile solvate were not located. No features of significance were noted in the final difference map.

Figures were produced by the NRCVAX version (Gabe et al., 1992) of ORTEPII (Johnson, 1971).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and mean-plane data have been deposited with the IUCr (Reference: OH1063). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Frye, C. L. (1969). J. Org. Chem. 34, 2496-2499
Frye, C. L. (1970). J. Am. Chem. Soc. 92. 1205-1210.
Gabe, E. J., Lee, F. L., Le Page, Y., Webster, M., Charland, J.-P., Larson. A. C. \& White, P. S. (1992). NRCl.A. The VRCI.A. Crustal Structure Sistem. Chemistry Division. NRC. Ottawa. Canada KlA OR6.

Holmes. R. R. \& Deiters. J. A. (1977). J. Am. Chem. Soc. 99. $3318 \quad 3326$.
Hoppe. M. L.. Laine. R. M.. Kampf. J.. Gordon. M. S. \& Burggraf. L. W. (1993). Angew. Chem. Int. Ed. Engl. 32. 287289.

Hosmanc. N. S.. Lei. J.. Hongming. Z.. Bausch. J. W.. Suxya Prakash, G. K.. Williams. R. E. \& Onoak. T. P. (1991). Inorg. Chem. 30, 3793-3795.
Johnson. C. K. (1971). ORTEPII. Report ORNL-3794. 2nd revision. Oak Ridge National Laboratory, Tennessee. USA.
Laine. R. M.. Blohowiak. K. Y.. Robinson. T. R.. Hoppe. M. L.. Nardi, P.. Kampf. J. \& Uhm. J. (1991). Nature (London). 353. 642644.

Muetterties, E. L. \& Guggenberger. L. J. (1974). J. Am. Chem. Soc. 96. $1748 \quad 1756$.
Rudert. R.. Buschmann, J.. Luger. P. \& Trummlitz. G. (1992). Acta Crise. B48. 269.275.
Schomburg. D. von (1982). Z. Anorg. Allg. Chem. 493. 53. 58.
Sheldrick. G. M. (1990). SHELX'S90. Institute für Anorgisches Chemie Tammanstrasse 4, D- 37077 Göttingen. Germany.

Acta Cryst. (1995). C51, 10-12

Chlorotris(trimethylsilylcyclopentadienyl)zirconium

Wayne Lukens

Chemical Sciences Division, Lawrence Berkeley
Laboratory, and Department of Chemistry, University of California, Berkeley, CA 94720, USA

(Received 9 December 1993; accepted 28 June 1994)

Abstract

The title compound, $\left[\mathrm{ZrCl}\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Si}\right)_{3}\right]$, is a bent metallocene with two η^{5}-cyclopentadienyl ligands and one η^{1}-cyclopentadienyl ligand, i.e. chloro(3-trimethylsilyl-cyclopentadienyl- κC^{1})bis $\left(\eta^{5}\right.$-trimethylsilylcyclopentadienyl)zirconium. The $\mathrm{Zr}-\mathrm{C}$ bond length to the $\eta^{1}-$ cyclopentadienyl ligand is $2.396(5) \AA$ and the $\mathrm{Zr}-\mathrm{Cl}$ bond length is $2.442(1) \AA$.

Comment

The title compound (I) was synthesized as part of a study of zirconium compounds having several cyclopentadienyl rings. Zirconium compounds are known to possess up to three η^{5}-cyclopentadienyl rings as seen in the crystal structures of tetrakis(cyclopentadienyl)zirconium (Rogers, Vann Bynum \& Atwood, 1978) and tris(cyclopentadienyl)zirconium triethylaluminium hydride (Kopf, Vollmer \& Kaminsky, 1980); tris(cyclopentadienyl)zirconium chloride is also reported to possess three η^{5} cyclopentadienyl rings (Strittmatter \& Bursten, 1991). The ansa-bridged tris(cyclopentadienyl)zirconium and tris(cyclopentadienyl)hafnium chlorides also possess
three η^{5}-cyclopentadienyl ligands (Diamond, Green, Popham \& Chernega, 1993). However, the analogous tris(methylcyclopentadienyl)zirconium chloride (Etievant, Gautheron \& Tainturier, 1977) is reported to possess one η^{1} - and two η^{5}-cyclopentadienyl rings. The ${ }^{1}$ H NMR spectrum of the title compound revealed only one environment for the trimethylsilyl groups implying that the compound possesses either three η^{5} ligands or that it is fluxional, with one η^{1} and two η^{5} ligands which interconvert rapidly on the NMR time scale. To determine which coordination geometry was correct the crystal structure of $\left[\mathrm{ZrCl}\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{3}\right]$, (I), was determined.

(I)

An ORTEP (Johnson, 1965) drawing of the title complex is shown in Fig. 1. The $\mathrm{Zr}-\mathrm{C}$ distances in the η^{5}-cyclopentadienyl rings vary from 2.488 (6) \AA for $\mathrm{Zr}-\mathrm{C} 3$ to 2.591 (5) \AA for $\mathrm{Zr}-\mathrm{C} 1$. While the range of bond distances is larger than that of $\left[\mathrm{Zr} R_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ compounds (Rogers, Vann Bynum \& Atwood, 1978, and references therein), it is similar to that found in $\left[\mathrm{Zr}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$. The η^{1}-cyclopentadienyl ring is planar to within $0.02 \AA$ and has $\mathrm{C}-\mathrm{C}$ bond distances which are similar to those of the η^{1}-cyclopentadienyl ring of $\left[\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$ (Calderon, Cotton, DeBoer \& Takats, 1971). The $\mathrm{Zr}-\mathrm{C} 14$ distance is similar to the $\mathrm{Zr}-\mathrm{C}\left(\eta^{1}\right)$ distance found in $\left[\mathrm{Zr}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right][2.776(6) \AA$ A $]$.

Fig. 1. A view (ORTEP; Johnson, 1965) of the $\left[\mathrm{ZrCl}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)_{3}\right]$ molecule showing 50% probability ellipsoids. H atoms are omitted and only one set of the disordered C22-C24 methyl C atoms is displayed.

Experimental

The title compound was prepared from $\mathrm{K}\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)$ and $\mathrm{ZrCl}_{4} .2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ in tetrahydrofuran followed by sublimation and subsequent crystallization from hexane as orange needles. An air-sensitive crystal was mounted on the end of a 0.40 mm quartz capillary tube with a drop of Paratone- N oil.

Crystal data

$\left[\mathrm{ZrCl}\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{Si}\right)_{3}\right]$
$M_{r}=538.51$
Orthorhombic
Pbca
$a=11.979$ (2) \AA
$b=12.773$ (2) \AA
$c=37.264$ (6) \AA
$V=5702(2) \AA^{3}$
$Z=8$
$D_{x}=1.255 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical
$T_{\text {min }}=0.775, \quad T_{\text {max }}=$ 0.997

4201 measured reflections 3699 independent reflections 2873 observed reflections

$$
\left[F^{2}>3 \sigma\left(F^{2}\right)\right]
$$

Refinement

Refinement on F
$R=0.0467$
$w R=0.0585$
$S=1.999$
2873 reflections
290 parameters
H -atom parameters not refined
$w=1 / \sigma^{2}\left(F_{o}\right)$
$(\Delta / \sigma)_{\text {max }}<0.01$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 24 reflections
$\theta=11-13^{\circ}$
$\mu=0.61 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Needles
$0.45 \times 0.40 \times 0.40 \mathrm{~mm}$
Orange
$\theta_{\text {max }}=22.5^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 13$
$l=0 \rightarrow 40$
3 standard reflections frequency: 60 min intensity variation: 10.3% (linear decay)

$$
\Delta \rho_{\max }=1.81 \mathrm{e}^{\AA^{-3}}
$$

$$
\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
$$

Extinction correction: secondary (Stout \& Jensen, 1968)
Extinction coefficient: 5.1×10^{-8}
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$B_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} B_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Zr	0.05216 (1)	0.91599 (1)	0.11225 (1)	1.97 (1)
Cl	-0.0503 (1)	1.0455 (1)	0.07707 (1)	2.99 (3)
Sil	0.2735 (1)	0.9552 (1)	0.03056 (1)	2.61 (3)
Si2	-0.2734 (4)	0.8864 (1)	0.12535 (1)	2.65 (3)
Si3	0.3432 (1)	1.0357 (2)	0.22674 (1)	3.57 (4)
Cl	0.1803 (4)	0.8687 (4)	0.0586 (1)	2.3 (1)
C2	0.2135 (4)	0.8091 (4)	0.0890 (1)	2.5 (1)
C3	0.1282 (5)	0.7392 (4)	0.0986 (2)	2.9 (1)
C4	0.0386 (4)	0.7551 (4)	0.0747 (2)	2.9 (1)
C5	0.0716 (4)	0.8330 (5)	0.0502 (1)	2.8 (1)
C6	-0.1292 (4)	0.8857 (4)	0.1458 (1)	2.2 (1)

C7	$-0.0604(4)$	$0.7978(4)$	$0.1516(1)$	$2.5(1)$
C8	$0.0335(5)$	$0.8270(5)$	$0.1717(1)$	$2.9(1)$
C9	$0.0269(5)$	$0.9347(5)$	$0.1785(1)$	$2.8(1)$
C10	$-0.0729(4)$	$0.9717(4)$	$0.1628(1)$	$2.2(1)$
C11	$0.2714(4)$	$1.0616(4)$	$0.1833(1)$	$2.6(1)$
C12	$0.1888(5)$	$1.1419(4)$	$0.1765(2)$	$2.8(1)$
C13	$0.1465(5)$	$1.1297(4)$	$0.1422(1)$	$2.6(1)$
C14	$0.1975(4)$	$1.0385(4)$	$0.1260(1)$	$2.2(1)$
C15	$0.2770(4)$	$1.0021(5)$	$0.1524(1)$	$2.6(1)$
C16	$0.2944(5)$	$0.8883(5)$	$-0.0130(2)$	$3.8(1)$
C17	$0.2107(6)$	$1.0863(5)$	$0.0226(2)$	$3.9(2)$
C18	$0.4110(5)$	$0.9657(5)$	$0.0539(2)$	$4.1(1)$
C19	$-0.3281(5)$	$1.0219(5)$	$0.1257(2)$	$3.9(1)$
C20	$-0.3597(6)$	$0.7999(6)$	$0.1547(2)$	$5.4(2)$
C21	$-0.2728(5)$	$0.8313(5)$	$0.0792(2)$	$4.0(1)$
C22	$0.298(1)$	$0.914(1)$	$0.2453(4)$	$6.1(4)$
C22	$0.425(1)$	$1.140(1)$	$0.2437(4)$	$5.9(4)$
C23	$0.310(2)$	$1.147(1)$	$0.2574(4)$	$7.7(5)$
C23'	$0.433(2)$	$0.915(1)$	$0.2218(5)$	$9.2(5)$
C24	$0.500(1)$	$1.037(3)$	$0.2175(5)$	$15.4(9)$
C24	$0.230(2)$	$0.998(3)$	$0.2621(5)$	$15.1(9)$

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$
$C p 1$ and $C p 2$ are the centroids of the η^{5}-cyclopentadienyl rings.

$\mathrm{Zr}-\mathrm{Cl}$	2.442 (1)	$\mathrm{Zr}-\mathrm{Cl} 4$	2.396 (5)
$\mathrm{Zr}-\mathrm{Cpl}$	2.227	$\mathrm{Zr}-\mathrm{Cp} 2$	2.200
$\mathrm{Zr}-\mathrm{Cl}$	2.591 (5)	$\mathrm{Zr}-\mathrm{C} 6$	2.536 (5)
$\mathrm{Zr}-\mathrm{C} 2$	2.519 (5)	$\mathrm{Zr}-\mathrm{C} 7$	2.501 (5)
$\mathrm{Zr}-\mathrm{C} 3$	2.488 (6)	$\mathrm{Zr}-\mathrm{C} 8$	2.500 (5)
$\mathrm{Zr}-\mathrm{C} 4$	2.491 (6)	$\mathrm{Zr}-\mathrm{C} 9$	2.500 (5)
$\mathrm{Zs}-\mathrm{C} 5$	2.553 (5)	$\mathrm{Zr}-\mathrm{C} 10$	2.509 (5)
C11-C12	1.447 (8)	C11-C15	1.381 (8)
C12-C13	1.383 (8)	C13-C14	1.447 (8)
C14-C15	1.446 (8)		
Cpl- $\mathrm{Zr}-\mathrm{Cp} 2$	127.8	$\mathrm{Cl}-\mathrm{Zr}-\mathrm{Cl} 4$	92.1 (1)

The structure was solved partially by direct methods (SHELXS86; Sheldrick, 1985), the remaining atoms being located by Fourier methods. C atoms of the trimethylsilyl group on the η^{1}-cyclopentadienyl ring (C22, C23 and C24) had large displacement parameters and excess electron density between them indicating disorder which was modeled by two sets of methyl C atoms (occupancy 0.5) related by a rotation of 180° about the $\mathrm{Si} 3-\mathrm{C} 11$ axis. Residual electron density in the final Fourier synthesis is associated with this trimethylsilyl group. All non-H atoms were refined with anisotropic displacement parameters. Each H atom was placed in a calculated position with a fixed displacement parameter of 1.3 times that of the C atom to which it is attached. The structure refinement used MolEN (Fair, 1990) and local unpublished programs.

The author would like to thank the National Science Foundation for a graduate fellowship and Dr Fred Hollander, Professor Richard Andersen and Dr David Sable for helpful discussions. This work was supported by the Director, Office of Energy Research Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy, under contract No. DE-AC03-76SF00098.

[^0]
References

Calderon, J. L., Cotton, F. A., DeBoer, B. G. \& Takats, J. (1971). J. Am. Chem. Soc. 93, 3592-3597.
Diamond, G. M., Green, M. L. H., Popham, N. A. \& Chernega, A. N. (1993). J. Chem. Soc. Dalton Trans. pp. 2535-2536.

Etievant, P., Gautheron, B. \& Tainturier, G. (1977). Bull. Soc. Chim. Fr. 5-6, 292-298.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kopf, J., Vollmer, H.-J. \& Kaminsky, W. (1980). Cryst. Struct. Commun. 9, 985-990.
Rogers, R. D., Vann Bynum, R. \& Atwood, J. L. (1978). J. Am. Chem. Soc. 100, 5238-5239.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3. edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination. a Practical Guide, p. 412. New York: Macmillan.
Strittmatter, R. J. \& Bursten, B. E. (1991). J. Am. Chem. Soc. 113, 552-559.

Acta Cryst. (1995). C51, 12-14

Oxobis(2,4-pentanedionato)vanadium(IV), a Redetermination

Edward Shuter, Steven J. Rettig and Chris Orvig

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1 ZI
(Received 18 July 1994; accepted 13 September 1994)

Abstract

A redetermination of oxobis(2,4-pentanedionato)vanadium(IV), $\left[\mathrm{VO}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]$, has been undertaken using high-resolution Mo data. Geometrical parameters do not differ significantly from those reported earlier [Dodge, Templeton \& Zalkin (1961). J. Chem. Phys. 35, 5567; Hon, Belford \& Pfluger (1965). J. Chem. Phys. 43, 3111-3115], but the standard deviations are improved by an order of magnitude. Important structural parameters: V -O(basal) 1.967 (1)-1.970(1) \AA and $\mathrm{V}=\mathrm{O}$ (apical) 1.584 (2) Å.

Comment

Current interest in orally active insulin mimics, particularly vanadium compounds (Shechter, 1990; Shechter et al., 1990), has prompted a redetermination of the structure of oxobis(2,4-pentanedionato)vanadium(IV), (I). Since some of the promising vanadium-containing insulin mimics are structurally related to vanadyl bis (β -

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: MU1105). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

